Tuesday, 3 October 2017

Moving Average Filter White Noise


A média móvel como um filtro A média móvel é freqüentemente usada para suavizar dados na presença de ruído. A média móvel simples nem sempre é reconhecida como o filtro de Resposta de Impulso Finito (FIR) que é, enquanto na verdade é um dos filtros mais comuns no processamento de sinal. Tratá-lo como um filtro, permitindo compará-lo com, por exemplo, filtros com janelas-sinc (veja os artigos sobre os filtros passa-baixa, alta passagem e banda passada e banda-rejeição para exemplos desses). A principal diferença com esses filtros é que a média móvel é adequada para sinais para os quais a informação útil está contida no domínio do tempo. Dos quais suavizar medições por média é um excelente exemplo. Os filtros Windowed-sinc, por outro lado, são performantes no domínio da frequência. Com equalização no processamento de áudio como um exemplo típico. Existe uma comparação mais detalhada de ambos os tipos de filtros em Time Domain vs. Frequency Domain Performance of Filters. Se você tem dados para os quais tanto o tempo quanto o domínio de freqüência são importantes, então você pode querer examinar as Variações na Média de Movimento. Que apresenta uma série de versões ponderadas da média móvel que são melhores nisso. A média móvel do comprimento (N) pode ser definida como escrita como normalmente é implementada, com a amostra de saída atual como a média das amostras anteriores (N). Visto como um filtro, a média móvel realiza uma convolução da seqüência de entrada (xn) com um pulso retangular de comprimento (N) e altura (1N) (para tornar a área do pulso e, portanto, o ganho do filtro , 1 ). Na prática, é melhor tomar (N) ímpar. Embora uma média móvel também possa ser calculada usando um número par de amostras, usando um valor ímpar para (N) tem a vantagem de que o atraso do filtro será um número inteiro de amostras, uma vez que o atraso de um filtro com (N) As amostras são exatamente ((N-1) 2). A média móvel pode então ser alinhada exatamente com os dados originais, deslocando-a por um número inteiro de amostras. Domínio do tempo Uma vez que a média móvel é uma convolução com um pulso retangular, sua resposta de freqüência é uma função sinc. Isso torna algo como o dual do filtro windowed-sinc, uma vez que é uma convolução com um pulso sinc que resulta em uma resposta de freqüência retangular. Essa é essa resposta de freqüência sincera que torna a média móvel um desempenho pobre no domínio da freqüência. No entanto, ele funciona muito bem no domínio do tempo. Portanto, é perfeito suavizar os dados para remover o ruído enquanto, ao mesmo tempo, mantendo uma resposta de passo rápido (Figura 1). Para o típico Black Gaussian Noise (AWGN) que é frequentemente assumido, a média (N) amostras tem o efeito de aumentar o SNR por um fator de (sqrt N). Uma vez que o ruído para as amostras individuais não está correlacionado, não há motivo para tratar cada amostra de forma diferente. Assim, a média móvel, que dá a cada amostra o mesmo peso, eliminará a quantidade máxima de ruído para uma nitidez de resposta de passo dada. Implementação Por ser um filtro FIR, a média móvel pode ser implementada através da convolução. Em seguida, terá a mesma eficiência (ou falta dela) como qualquer outro filtro FIR. No entanto, também pode ser implementado de forma recursiva, de uma forma muito eficiente. Isso segue diretamente da definição de que esta fórmula é o resultado das expressões para (yn) e (yn1), ou seja, onde percebemos que a mudança entre (yn1) e (yn) é que um termo extra (xn1N) aparece em O fim, enquanto o termo (xn-N1N) é removido desde o início. Em aplicações práticas, muitas vezes é possível excluir a divisão por (N) para cada termo, compensando o ganho resultante de (N) em outro local. Esta implementação recursiva será muito mais rápida do que a convolução. Cada novo valor de (y) pode ser calculado com apenas duas adições, em vez das adições (N) que seriam necessárias para uma implementação direta da definição. Uma coisa a procurar com uma implementação recursiva é que os erros de arredondamento se acumulam. Isso pode ou não ser um problema para a sua aplicação, mas também implica que esta implementação recursiva funcionará melhor com uma implementação inteira do que com números de ponto flutuante. Isso é bastante incomum, uma vez que uma implementação de ponto flutuante é geralmente mais simples. A conclusão de tudo isso deve ser que você nunca deve subestimar a utilidade do filtro de média móvel simples em aplicativos de processamento de sinal. Ferramenta de design de filtro Este artigo é complementado com uma ferramenta de design de filtro. Experimente valores diferentes para (N) e visualize os filtros resultantes. Experimente agora o Guia de cientistas e engenheiros para processamento de sinal digital Por Steven W. Smith, Ph. D. Capítulo 15: Filtros médios móveis Redução de ruído versus resposta por etapas Muitos cientistas e engenheiros se sentem culpados por usar o filtro de média móvel. Por ser tão simples, o filtro de média móvel geralmente é o primeiro a ser tentado quando confrontado com um problema. Mesmo que o problema seja completamente resolvido, ainda há a sensação de que algo mais deve ser feito. Esta situação é realmente irônica. Não é apenas o filtro médio móvel muito bom para muitas aplicações, é ideal para um problema comum, reduzindo o ruído branco aleatório enquanto mantém a resposta passo a passo mais nítida. A Figura 15-1 mostra um exemplo de como isso funciona. O sinal em (a) é um pulso enterrado em barulho aleatório. Em (b) e (c), a ação de suavização do filtro médio móvel diminui a amplitude do ruído aleatório (bom), mas também reduz a nitidez das bordas (ruim). De todos os filtros lineares possíveis que poderiam ser usados, a média móvel produz o menor ruído para uma nitidez de borda dada. A quantidade de redução de ruído é igual à raiz quadrada do número de pontos na média. Por exemplo, um filtro de média móvel de 100 pontos reduz o ruído por um fator de 10. Para entender por que a média móvel, se a melhor solução, imagine que queremos projetar um filtro com uma nitidez de borda fixa. Por exemplo, vamos assumir que nós corrigimos a nitidez da borda, especificando que há onze pontos no aumento da resposta do passo. Isso requer que o kernel de filtro tenha onze pontos. A questão de otimização é: como escolhemos os onze valores no kernel de filtro para minimizar o ruído no sinal de saída Uma vez que o ruído que estamos tentando reduzir é aleatório, nenhum dos pontos de entrada é especial, cada um é tão barulhento quanto o vizinho . Portanto, é inútil dar tratamento preferencial a qualquer um dos pontos de entrada atribuindo-lhe um coeficiente maior no kernel de filtro. O ruído mais baixo é obtido quando todas as amostras de entrada são tratadas de forma igual, isto é, o filtro médio móvel. (Mais adiante neste capítulo, mostramos que outros filtros são essencialmente tão bons. O ponto é que nenhum filtro é melhor do que a média móvel simples).

No comments:

Post a Comment